Ubiquitination within the membrane-proximal ezrin-radixin-moesin (ERM)-binding region of the L1 cell adhesion molecule
نویسنده
چکیده
The dynamic turnover of the L1 cell adhesion molecule to and from the plasma membrane that is mediated through exo-and endocytic trafficking is central to axon outgrowth. Although the ubiquitination of L1 in response to incubation with an L1 antibody that mimics L1-L1 homophilic binding has been previously shown, the endocytic trafficking pathway of the ubiquitinated L1 destined for degradation is yet unclear. I have recently shown that the ubiquitinated L1 is endocytosed by Rabex-5, which is an ubiquitin-binding protein and guanine nucleotide exchange factor for Rab5, into early endosomes from the plasma membrane. Here, I speculate on the putative ubiquitination site within the membrane-proximal ezrin-binding motif in the cytoplasmic domain of L1 and discuss the regulatory role of this motif in the competition between ubiquitination and the binding of ezrin prior to L1 internalization.
منابع مشابه
Phosphorylation of adhesion- and growth-regulatory human galectin-3 leads to the induction of axonal branching by local membrane L1 and ERM redistribution.
Serine phosphorylation of the beta-galactoside-binding protein galectin-3 (Gal-3) impacts nuclear localization but has unknown consequences for extracellular activities. Herein, we reveal that the phosphorylated form of galectin-3 (pGal-3), adsorbed to substratum surfaces or to heparan sulphate proteoglycans, is instrumental in promoting axon branching in cultured hippocampal neurons by local a...
متن کاملL1-mediated branching is regulated by two ezrin-radixin-moesin (ERM)-binding sites, the RSLE region and a novel juxtamembrane ERM-binding region.
We investigated how the neural cell adhesion molecule L1 mediates neurite outgrowth through L1-L1 homophilic interactions. Wild-type L1 and L1 with mutations in the cytoplasmic domain (CD) were introduced into L1 knock-out neurons, and transfected neurons were grown on an L1 substrate. Neurite length and branching were compared between wild-type L1 and L1CD mutations. Surprisingly, the L1CD is ...
متن کاملPerturbation of cell adhesion and microvilli formation by antisense oligonucleotides to ERM family members
To examine the functions of ERM family members (ezrin, radixin, and moesin), mouse epithelial cells (MTD-1A cells) and thymoma cells (L5178Y), which coexpress all of them, were cultured in the presence of antisense phosphorothioate oligonucleotides (PONs) complementary to ERM sequences. Immunoblotting revealed that the antisense PONs selectively suppressed the expression of each member. Immunof...
متن کاملFunctional binding interaction identified between the axonal CAM L1 and members of the ERM family
A yeast two-hybrid library was screened using the cytoplasmic domain of the axonal cell adhesion molecule L1 to identify binding partners that may be involved in the regulation of L1 function. The intracellular domain of L1 bound to ezrin, a member of the ezrin, radixin, and moesin (ERM) family of membrane-cytoskeleton linking proteins, at a site overlapping that for AP2, a clathrin adaptor. Bi...
متن کاملIdentification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44
ERM (ezrin, radixin and moesin) proteins function as linkers between the actin cytoskeleton and the plasma membrane. In addition to this structural role, these proteins are highly regulatable making them ideal candidates to mediate important physiological events such as adhesion and membrane morphology and to control formation and breakdown of membrane-cytoskeletal junctions. Recently, a direct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2013